Weighted Resolution Optimization#

class invert.solvers.wrop.SolverBackusGilbert(name='Backus-Gilbert', **kwargs)#

Class for the Backus Gilbert inverse solution.

make_inverse_operator(forward, *args, alpha='auto', **kwargs)#

Calculate inverse operator.

Parameters
  • forward (mne.Forward) – The mne-python Forward model instance.

  • alpha (float) – The regularization parameter.

Returns

self

Return type

object returns itself for convenience

class invert.solvers.wrop.SolverLAURA(name='Local Auto-Regressive Average', **kwargs)#

Class for the Local AUtoRegressive Average (LAURA) inverse solution.

make_inverse_operator(forward, *args, noise_cov=None, alpha='auto', drop_off=2, verbose=0, **kwargs)#

Calculate inverse operator.

Parameters
  • forward (mne.Forward) – The mne-python Forward model instance.

  • alpha (float) – The regularization parameter.

  • noise_cov (numpy.ndarray) – The noise covariance matrix

  • drop_off (float) – Controls the steepness of the patches distribution. It is not adviced to change this parameter in most cases.

Returns

self

Return type

object returns itself for convenience