Smooth Matching Pursuit#
- class invert.solvers.smooth_matching_pursuit.SolverISubSMP(name='Iterative Subspace Smooth Matching Pursuit', **kwargs)#
- Class for the Subspace Smooth Matching Pursuit (SubSMP) inverse solution. Developed
by Lukas Hecker as a smooth extension of the orthogonal matching pursuit algorithm [1], 19.10.2022.
- forward#
The mne-python Forward model instance.
- Type
mne.Forward
References
[1] Duarte, M. F., & Eldar, Y. C. (2011). Structured compressed sensing: From theory to applications. IEEE Transactions on signal processing, 59(9), 4053-4085.
- apply_inverse_operator(mne_obj, include_singletons=True) mne.source_estimate.SourceEstimate #
Apply the inverse operator. :param mne_obj: The MNE data object. :type mne_obj: [mne.Evoked, mne.Epochs, mne.io.Raw]
- Returns
stc – The mne Source Estimate object
- Return type
mne.SourceEstimate
- calc_isubsmp_solution(y, include_singletons=True, var_thresh=1)#
Calculates the Orthogonal Matching Pursuit (OMP) inverse solution.
- Parameters
y (numpy.ndarray) – The data matrix (channels, n_time).
include_singletons (bool) – If True -> Include not only smooth patches but also single dipoles.
- Returns
x_hat – The inverse solution (dipoles,)
- Return type
numpy.ndarray
- calc_subsmp_solution(y, include_singletons=True, var_thresh=0.1)#
Calculate the Subspace Smooth Matching Pursuit (SubSMP) solution.
- make_inverse_operator(forward, *args, alpha='auto', verbose=0, **kwargs)#
Calculate inverse operator.
- Parameters
forward (mne.Forward) – The mne-python Forward model instance.
alpha (float) – The regularization parameter.
- Returns
self
- Return type
object returns itself for convenience
- class invert.solvers.smooth_matching_pursuit.SolverSMP(name='Smooth Matching Pursuit', **kwargs)#
- Class for the Smooth Matching Pursuit (SMP) inverse solution. Developed
by Lukas Hecker as a smooth extension of the orthogonal matching pursuit algorithm [1,2], 19.10.2022.
- forward#
The mne-python Forward model instance.
- Type
mne.Forward
References
[1] Tropp, J. A., & Gilbert, A. C. (2007). Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on information theory, 53(12), 4655-4666. [2] Duarte, M. F., & Eldar, Y. C. (2011). Structured compressed sensing: From theory to applications. IEEE Transactions on signal processing, 59(9), 4053-4085.
- apply_inverse_operator(mne_obj, K=1, include_singletons=True) mne.source_estimate.SourceEstimate #
Apply the inverse operator. :param mne_obj: The MNE data object. :type mne_obj: [mne.Evoked, mne.Epochs, mne.io.Raw]
- Returns
stc – The mne Source Estimate object
- Return type
mne.SourceEstimate
- calc_smp_solution(y, include_singletons=True)#
Calculates the Orthogonal Matching Pursuit (OMP) inverse solution.
- Parameters
y (numpy.ndarray) – The data matrix (channels,).
include_singletons (bool) – If True -> Include not only smooth patches but also single dipoles.
- Returns
x_hat – The inverse solution (dipoles,)
- Return type
numpy.ndarray
- make_inverse_operator(forward, *args, alpha='auto', **kwargs)#
Calculate inverse operator.
- Parameters
forward (mne.Forward) – The mne-python Forward model instance.
alpha (float) – The regularization parameter.
- Returns
self
- Return type
object returns itself for convenience
- class invert.solvers.smooth_matching_pursuit.SolverSSMP(name='Smooth Simultaneous Matching Pursuit', **kwargs)#
- Class for the Smooth Simultaneous Matching Pursuit (SSMP) inverse
solution. Developed by Lukas Hecker as a smooth extension of the orthogonal matching pursuit algorithm [1,2], 19.10.2022.
- forward#
The mne-python Forward model instance.
- Type
mne.Forward
References
[1] Duarte, M. F., & Eldar, Y. C. (2011). Structured compressed sensing: From theory to applications. IEEE Transactions on signal processing, 59(9), 4053-4085.
[2] Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on information theory, 52(4), 1289-1306.
- apply_inverse_operator(mne_obj, include_singletons=True) mne.source_estimate.SourceEstimate #
Apply the inverse operator. :param mne_obj: The MNE data object. :type mne_obj: [mne.Evoked, mne.Epochs, mne.io.Raw] :param include_singletons: If True -> Include not only smooth patches but also single dipoles. :type include_singletons: bool
- Returns
stc – The mne Source Estimate object
- Return type
mne.SourceEstimate
- calc_ssmp_solution(y, include_singletons=True)#
Calculates the Smooth Simultaneous Orthogonal Matching Pursuit (SSMP) inverse solution.
- Parameters
y (numpy.ndarray) – The data matrix (channels,).
include_singletons (bool) – If True -> Include not only smooth patches but also single dipoles.
- Returns
x_hat – The inverse solution (dipoles,)
- Return type
numpy.ndarray
- make_inverse_operator(forward, *args, alpha='auto', **kwargs)#
Calculate inverse operator.
- Parameters
forward (mne.Forward) – The mne-python Forward model instance.
alpha (float) – The regularization parameter.
- Returns
self
- Return type
object returns itself for convenience
- class invert.solvers.smooth_matching_pursuit.SolverSubSMP(name='Subspace Smooth Matching Pursuit', **kwargs)#
- Class for the Subspace Smooth Matching Pursuit (SubSMP) inverse solution. Developed
by Lukas Hecker as a smooth extension of the orthogonal matching pursuit algorithm [1], 19.10.2022.
- forward#
The mne-python Forward model instance.
- Type
mne.Forward
References
[1] Duarte, M. F., & Eldar, Y. C. (2011). Structured compressed sensing: From theory to applications. IEEE Transactions on signal processing, 59(9), 4053-4085.
- apply_inverse_operator(mne_obj, include_singletons=True) mne.source_estimate.SourceEstimate #
Apply the inverse operator. :param mne_obj: The MNE data object. :type mne_obj: [mne.Evoked, mne.Epochs, mne.io.Raw]
- Returns
stc – The mne Source Estimate object
- Return type
mne.SourceEstimate
- calc_smp_solution(y, include_singletons=True, var_thresh=1)#
Calculates the Orthogonal Matching Pursuit (OMP) inverse solution.
- Parameters
y (numpy.ndarray) – The data matrix (channels,).
include_singletons (bool) – If True -> Include not only smooth patches but also single dipoles.
var_thresh (float) – Threshold how much variance will be explained in the data
- Returns
x_hat – The inverse solution (dipoles,)
- Return type
numpy.ndarray
- calc_subsmp_solution(y, include_singletons=True, var_thresh=1)#
Calculate the Subspace Smooth Matching Pursuit (SubSMP) solution.
- Parameters
y (numpy.ndarray) – The M/EEG data Matrix
include_singletons (bool) – If True -> include single dipoles as candidates, else include only smooth patches
var_thresh (float) – Threshold how much variance will be explained in the data
- make_inverse_operator(forward, *args, alpha='auto', **kwargs)#
Calculate inverse operator.
- Parameters
forward (mne.Forward) – The mne-python Forward model instance.
alpha (float) – The regularization parameter.
- Returns
self
- Return type
object returns itself for convenience