Skip to content

Generalized Iterative Subspace Solver

Solver ID: GI

Usage

from invert import Solver

# fwd = ...    (mne.Forward object)
# evoked = ... (mne.Evoked object)

solver = Solver("GI")
solver.make_inverse_operator(fwd)
stc = solver.apply_inverse_operator(evoked)
stc.plot()

Overview

Generalized iterative framework covering RAP-MUSIC, alternating projections (AP), and signal subspace matching (SSM), with optional flexible-extent patch estimation.

References

  1. Mosher, J. C., & Leahy, R. M. (1999). Source localization using recursively applied and projected (RAP) MUSIC. IEEE Transactions on Signal Processing, 47(2), 332–340.
  2. Adler, A., Wax, M., & Pantazis, D. (2022). Brain Source Localization by Alternating Projection. In 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI) (pp. 1–5). IEEE.
  3. Wax, M., & Adler, A. (2021). Direction of arrival estimation in the presence of model errors by signal subspace matching. Signal Processing, 181, 107900.
  4. Hecker, L., Tebartz van Elst, L., & Kornmeier, J. (2023). Source localization using recursively applied and projected MUSIC with flexible extent estimation. Frontiers in Neuroscience, 17, 1170862.

API Reference

Bases: BaseSolver

Class that generalizes iterative solutions like RAP-MUSIC, AP and SSM inverse solution with flexible extent estimation (FLEX-AP).

References

[1] Wax, M., & Adler, A. (2021). Direction of arrival estimation in the presence of model errors by signal subspace matching. Signal Processing, 181, 107900. [2] TBD.

Source code in invert/solvers/music/generalized_iterative.py
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
class SolverGeneralizedIterative(BaseSolver):
    """Class that generalizes iterative solutions like RAP-MUSIC, AP and SSM
        inverse solution with flexible extent estimation (FLEX-AP).

    References
    ---------
    [1] Wax, M., & Adler, A. (2021). Direction of arrival estimation in the
    presence of model errors by signal subspace matching. Signal Processing,
    181, 107900. [2] TBD.

    """

    meta = SolverMeta(
        acronym="GI",
        full_name="Generalized Iterative Subspace Solver",
        category="Subspace Methods",
        description=(
            "Generalized iterative framework covering RAP-MUSIC, alternating "
            "projections (AP), and signal subspace matching (SSM), with optional "
            "flexible-extent patch estimation."
        ),
        references=[
            "Mosher, J. C., & Leahy, R. M. (1999). Source localization using recursively applied and projected (RAP) MUSIC. IEEE Transactions on Signal Processing, 47(2), 332–340.",
            "Adler, A., Wax, M., & Pantazis, D. (2022). Brain Source Localization by Alternating Projection. In 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI) (pp. 1–5). IEEE.",
            "Wax, M., & Adler, A. (2021). Direction of arrival estimation in the presence of model errors by signal subspace matching. Signal Processing, 181, 107900.",
            "Hecker, L., Tebartz van Elst, L., & Kornmeier, J. (2023). Source localization using recursively applied and projected MUSIC with flexible extent estimation. Frontiers in Neuroscience, 17, 1170862.",
        ],
    )

    def __init__(
        self, name="Flexible Signal Subspace Matching", scale_leadfield=False, **kwargs
    ):
        self.name = name
        self.is_prepared = False
        self.scale_leadfield = scale_leadfield
        return super().__init__(**kwargs)

    def make_inverse_operator(
        self,
        forward,
        mne_obj,
        *args,
        inverse_type="SSM",
        n_orders=3,
        alpha="auto",
        n="enhanced",
        k="auto",
        refine_solution=True,
        max_iter=5,
        diffusion_smoothing=True,
        diffusion_parameter=0.1,
        adjacency_type="spatial",
        adjacency_distance=3e-3,
        lambda_reg1=0.001,
        lambda_reg2=0.0001,
        lambda_reg3=0.0,
        **kwargs,
    ):
        """Calculate inverse operator.

        Parameters
        ----------
        forward : mne.Forward
            The mne-python Forward model instance.
        mne_obj : [mne.Evoked, mne.Epochs, mne.io.Raw]
            The MNE data object.
        inverse_type : str
            The type of inverse solution to use. "SSM" -> Signal Subspace Matching.
            "AP" -> Alternating Projections. "RAP" -> Recursively Applied and Projected MUSIC.
        n_orders : int
            Controls the maximum smoothness to pursue.
        alpha : float
            The regularization parameter.
        n : int/ str
            Number of eigenvalues to use.
                int: The number of eigenvalues to use.
                "L": L-curve method for automated selection.
                "drop": Selection based on relative change of eigenvalues.
                "auto": Combine L and drop method
                "mean": Selects the eigenvalues that are larger than the mean of all eigs.
        k : int
            Number of recursions.
        stop_crit : float
            Criterion to stop recursions. The lower, the more dipoles will be
            incorporated.
        max_iter : int
            Maximum number of iterations during refinement.
        diffusion_smoothing : bool
            Whether to use diffusion smoothing. Default is True.
        diffusion_parameter : float
            The diffusion parameter (alpha). Default is 0.1.
        adjacency_type : str
            The type of adjacency. "spatial" -> based on graph neighbors. "distance" -> based on distance
        adjacency_distance : float
            The distance at which neighboring dipoles are considered neighbors.
        depth_weights : numpy.ndarray
            The depth weights to use for depth weighting the leadfields. If None, no depth weighting is applied.

        Return
        ------
        self : object returns itself for convenience
        """
        super().make_inverse_operator(forward, *args, alpha=alpha, **kwargs)

        self.diffusion_smoothing = (diffusion_smoothing,)
        self.diffusion_parameter = diffusion_parameter
        self.n_orders = n_orders
        self.adjacency_type = adjacency_type
        self.adjacency_distance = adjacency_distance
        self.inverse_type = inverse_type
        data = self.unpack_data_obj(mne_obj)

        if not self.is_prepared:
            self.prepare_flex()

        if inverse_type == "SSM":
            self.get_source = self.get_source_ssm
            self.get_covariance = self.get_covariance_ssm
        elif inverse_type == "AP":
            self.get_source = self.get_source_ap
            self.get_covariance = self.get_covariance_ap
        elif inverse_type == "RAP":
            self.get_source = self.get_source_rap
            self.get_covariance = self.get_covariance_rap
        else:
            self.get_source = None
            raise AttributeError(f"Unknown inverse_type: {inverse_type}")

        inverse_operator = self.make_iterative_solution(
            data,
            n,
            k,
            max_iter=max_iter,
            refine_solution=refine_solution,
            lambda_reg1=lambda_reg1,
            lambda_reg2=lambda_reg2,
            lambda_reg3=lambda_reg3,
        )
        self.inverse_operators = [
            InverseOperator(inverse_operator, self.name),
        ]

        return self

    def make_iterative_solution(
        self,
        Y,
        n,
        k,
        refine_solution=True,
        max_iter=5,
        lambda_reg1=0.001,
        lambda_reg2=0.0001,
        lambda_reg3=0.0,
    ):
        """Create the iterative inverse solution to the EEG data.

        Parameters
        ----------
        Y : numpy.ndarray
            EEG data matrix (channels, time)
        n : int/ str
            Number of eigenvectors to use or "auto" for l-curve method.
        k : int
            Number of recursions.
        refine_solution : bool
            If True: Re-visit each selected candidate and check if there is a
            better alternative.
        lambda_reg1 : float
            Regularization parameter for the projection matrix.
        lambda_reg2 : float
            Regularization parameter for the source covariance matrix.
        lambda_reg3 : float
            Regularization parameter for the source covariance matrix.

        Return
        ------
        x_hat : numpy.ndarray
            Source data matrix (sources, time)
        """
        n_chans, n_dipoles = self.leadfield.shape
        Y.shape[1]

        leadfields = self.leadfields
        len(self.leadfields)

        if k == "auto":
            k = n_chans

        # Determine the number of sources
        if not isinstance(n, int):
            n_comp = self.estimate_n_sources(Y, method=n)
        else:
            n_comp = n

        P_Y = self.get_covariance(Y, n_comp, lambda_reg1=lambda_reg1)
        Q = np.eye(n_chans)  # np.zeros((n_chans, n_chans))

        candidates = []
        A_q = []

        # Initial source location
        expression = self.get_source(P_Y, Q, leadfields, lambda_reg=lambda_reg3)
        order, dipole = np.unravel_index(np.nanargmax(expression), expression.shape)
        candidates.append([order, dipole])
        logger.debug("%s %s", order, dipole)

        # Now, add one source at a time
        for _ in range(1, n_comp):
            order, location = candidates[-1]
            A_q.append(leadfields[order][:, location])
            Q = self.compute_projection_matrix(A_q, lambda_reg=lambda_reg2)
            expression = self.get_source(
                P_Y, Q, leadfields, candidates, lambda_reg=lambda_reg3
            )
            order, dipole = np.unravel_index(np.nanargmax(expression), expression.shape)
            candidates.append([order, dipole])

        A_q.append(leadfields[order][:, dipole])

        # Phase 2: refinement
        candidates_2 = deepcopy(candidates)
        if len(candidates_2) > 1 and refine_solution:
            candidates_2_prev = deepcopy(candidates_2)
            for _j in range(max_iter):
                A_q_j = A_q.copy()
                for qq in range(n_comp):
                    A_temp = np.delete(A_q_j, qq, axis=0)  # delete the current source
                    qq_temp = np.delete(
                        candidates_2, qq, axis=0
                    )  # delete the current source
                    Q = self.compute_projection_matrix(A_temp, lambda_reg=lambda_reg2)
                    expression = self.get_source(
                        P_Y, Q, leadfields, qq_temp, lambda_reg=lambda_reg3
                    )
                    order, dipole = np.unravel_index(
                        np.nanargmax(expression), expression.shape
                    )
                    candidates_2[qq] = [order, dipole]
                    A_q_j[qq] = leadfields[candidates_2[qq][0]][:, candidates_2[qq][1]]

                if candidates_2 == candidates_2_prev:
                    # print(f"No change after {j+1} iterations")
                    break
                # else:
                #     print(candidates_2_prev, " ==> ", candidates_2)
                candidates_2_prev = deepcopy(candidates_2)

        self.candidates = candidates_2

        # Low-rank minimum norm solution
        source_covariance = np.identity(n_comp)
        L = np.stack(
            [leadfields[order][:, dipole] for order, dipole in candidates_2], axis=1
        )
        gradients = np.stack(
            [self.gradients[order][dipole].toarray() for order, dipole in candidates_2],
            axis=1,
        )[0]
        inverse_operator = (
            gradients.T
            @ source_covariance
            @ L.T
            @ np.linalg.pinv(L @ source_covariance @ L.T)
        )

        return inverse_operator

    def estimate_comps(self, Y, n):
        """Estimate the number of sources to use.

        Parameters
        ----------
        Y : numpy.ndarray
            The data matrix.
        n : str
            The method to use. "L" -> L-curve method. "drop" -> based on eigenvalue drop-off.
            "auto" -> Combine L and drop method. "mean" -> Selects the eigenvalues that are larger than the mean of all eigs.

        Return
        ------
        n_comp : int
            The number of sources to use.
        """
        # Use the base class method for estimating number of sources
        return self.estimate_n_sources(Y, method=n)

    @staticmethod
    def get_covariance_ssm(Y, *args, lambda_reg1=0.001, **kwargs):
        """Compute the source covariance matrix for the SSM algorithm."""
        n_time = Y.shape[1]

        M_Y = Y.T @ Y
        YY = M_Y + lambda_reg1 * np.trace(M_Y) * np.eye(n_time)
        P_Y = (Y @ np.linalg.inv(YY)) @ Y.T
        return P_Y

    @staticmethod
    def get_covariance_rap(Y, n_comp, *args, lambda_reg1=0.001, **kwargs):
        """Compute the source covariance matrix for the SSM algorithm."""
        n_chans, n_time = Y.shape[1]

        C = Y @ Y.T
        U, _, _ = np.linalg.svd(C, full_matrices=False)
        Us = U[:, :n_comp]

        # MUSIC subspace-based Covariance
        P_Y = Us @ Us.T

        return P_Y

    @staticmethod
    def get_covariance_ap(Y, *args, lambda_reg1=0.001, **kwargs):
        """Compute the source covariance matrix for the SSM algorithm."""
        n_chans, n_time = Y.shape
        C = Y @ Y.T
        P_Y = C + lambda_reg1 * np.trace(C) * np.eye(n_chans)
        return P_Y

    @staticmethod
    def get_source_ssm(
        P_Y: np.ndarray,
        Q: np.ndarray,
        leadfields: list,
        q_ignore: Optional[list] = None,
        lambda_reg=0.0,
    ):
        """Compute the source with the highest AP value.
        Parameters
        ----------
        P_Y : numpy.ndarray
            The projection matrix of the data covariance.
        Q : numpy.ndarray
            The out-projection matrix of the source covariance.
        leadfields : list
            The list of leadfields.
        q_ignore : list
            List of sources to ignore (e.g., already selected sources).
        lambda_reg : float
            Regularization parameter to enhance stability.
        """
        # print(f"Check within function")
        # print(P_Y.shape, P_Y)
        # print(Q.shape, Q)
        # print(leadfields[0].shape, leadfields[0])
        # print(q_ignore, lambda_reg)

        if q_ignore is None:
            q_ignore = []
        n_dipoles = leadfields[0].shape[1]
        n_orders = len(leadfields)

        P_Y_T_P_Y = P_Y.T @ P_Y

        expression = np.zeros((n_orders, n_dipoles))
        for jj in range(n_orders):
            a_s = Q @ leadfields[jj]

            # Fast
            upper = np.einsum("ij,ij->j", a_s, P_Y_T_P_Y @ a_s)
            lower = np.einsum("ij,ij->j", a_s, a_s) + lambda_reg
            expression[jj, :] = upper / lower

        if len(q_ignore) > 0:
            for order, dipole in q_ignore:
                expression[order, dipole] = np.nan

        return expression

    @staticmethod
    def get_source_rap(
        P_Y: np.ndarray,
        Q: np.ndarray,
        leadfields: list,
        q_ignore: Optional[list] = None,
        lambda_reg=0.0,
    ):
        if q_ignore is None:
            q_ignore = []
        n_orders = len(leadfields)
        n_chans, n_dipoles = leadfields[0].shape
        P_YQ = P_Y @ Q
        expression = np.zeros((n_orders, n_dipoles))
        for jj in range(n_orders):
            L = leadfields[jj]
            norm_1 = np.linalg.norm(P_YQ @ L, axis=0)
            norm_2 = np.linalg.norm(Q @ L, axis=0)
            expression[jj, :] = norm_1 / norm_2

        return expression

    @staticmethod
    def get_source_ap(C, Q, leadfields, q_ignore: Optional[list] = None, **kwargs):
        """Compute the source with the highest AP value.
        Parameters
        ----------
        C : numpy.ndarray
            The data covariance matrix.
        Q : numpy.ndarray
            The out-projection matrix of the source covariance.
        leadfields : list
            The list of leadfields.
        q_ignore : list
            List of sources to ignore (e.g., already selected sources).

        Returns
        -------
        order : int
            The order of the selected source.
        dipole : int
            The dipole index of the selected source.

        """
        # print(Q)
        # print()
        # print(C)

        if q_ignore is None:
            q_ignore = []
        n_dipoles = leadfields[0].shape[1]
        n_orders = len(leadfields)
        QC = Q @ C

        expression = np.zeros((n_orders, n_dipoles))
        for jj in range(n_orders):
            L = leadfields[jj]
            expression[jj, :] = np.sum(L * (QC @ (Q @ L)), axis=0) / np.sum(
                L * (Q @ L), axis=0
            )  # fast and stable

        if len(q_ignore) > 0:
            for order, dipole in q_ignore:
                expression[order, dipole] = np.nan

        return expression

    @staticmethod
    def compute_projection_matrix(A_q, lambda_reg=0.0001):
        """Compute the out-projection matrix Q."""

        A_q = np.stack(A_q, axis=1)
        M_A = A_q.T @ A_q
        AA = M_A + lambda_reg * np.trace(M_A) * np.eye(M_A.shape[0])
        P_A = (A_q @ np.linalg.pinv(AA)) @ A_q.T
        Q = np.eye(P_A.shape[0]) - P_A
        return Q

    def prepare_flex(self):
        """Create the dictionary of increasingly smooth sources unless
        self.n_orders==0. Flexibly selects diffusion parameter, too.

        Parameters
        ----------

        """
        n_dipoles = self.leadfield.shape[1]
        I = np.identity(n_dipoles)
        if self.adjacency_type == "spatial":
            adjacency = mne.spatial_src_adjacency(self.forward["src"], verbose=0)
        else:
            adjacency = mne.spatial_dist_adjacency(
                self.forward["src"], self.adjacency_distance, verbose=None
            )

        LL = laplacian(adjacency)
        self.leadfields = [
            deepcopy(self.leadfield),
        ]
        self.gradients = [
            csr_matrix(I),
        ]

        if self.diffusion_parameter == "auto":
            alphas = [0.05, 0.075, 0.1, 0.125, 0.15, 0.175]
            smoothing_operators = [csr_matrix(I - alpha * LL) for alpha in alphas]
        else:
            smoothing_operators = [
                csr_matrix(I - self.diffusion_parameter * LL),
            ]

        for smoothing_operator in smoothing_operators:
            for i in range(self.n_orders):
                smoothing_operator_i = (
                    smoothing_operator ** (i + 1)
                )  # csr_matrix(np.linalg.matrix_power(smoothing_operator.toarray(), i+1))
                new_leadfield = self.leadfields[0] @ smoothing_operator_i
                new_gradient = self.gradients[0] @ smoothing_operator_i

                # Scaling? Not sure...
                if self.scale_leadfield:
                    # new_leadfield -= new_leadfield.mean(axis=0)
                    new_leadfield /= np.linalg.norm(new_leadfield, axis=0)

                self.leadfields.append(new_leadfield)
                self.gradients.append(new_gradient)
        # scale and transform gradients
        for i in range(len(self.gradients)):
            row_sums = (
                self.gradients[i].sum(axis=1).ravel()
            )  # Compute the sum of each row
            scaling_factors = 1 / row_sums
            self.gradients[i] = csr_matrix(
                self.gradients[i].multiply(scaling_factors.reshape(-1, 1))
            )

        self.is_prepared = True

    @staticmethod
    def get_comps_L(D):
        # L-curve method
        iters = np.arange(len(D))
        n_comp_L = find_corner(deepcopy(iters), deepcopy(D))
        return n_comp_L

    @staticmethod
    def get_comps_drop(D):
        D_ = D / D.max()
        n_comp_drop = np.where(abs(np.diff(D_)) < 0.001)[0]

        if len(n_comp_drop) > 0:
            n_comp_drop = n_comp_drop[0] + 1
        else:
            n_comp_drop = 1
        return n_comp_drop

__init__

__init__(
    name="Flexible Signal Subspace Matching",
    scale_leadfield=False,
    **kwargs,
)
Source code in invert/solvers/music/generalized_iterative.py
def __init__(
    self, name="Flexible Signal Subspace Matching", scale_leadfield=False, **kwargs
):
    self.name = name
    self.is_prepared = False
    self.scale_leadfield = scale_leadfield
    return super().__init__(**kwargs)

make_inverse_operator

make_inverse_operator(
    forward,
    mne_obj,
    *args,
    inverse_type="SSM",
    n_orders=3,
    alpha="auto",
    n="enhanced",
    k="auto",
    refine_solution=True,
    max_iter=5,
    diffusion_smoothing=True,
    diffusion_parameter=0.1,
    adjacency_type="spatial",
    adjacency_distance=0.003,
    lambda_reg1=0.001,
    lambda_reg2=0.0001,
    lambda_reg3=0.0,
    **kwargs,
)

Calculate inverse operator.

Parameters:

Name Type Description Default
forward Forward

The mne-python Forward model instance.

required
mne_obj [Evoked, Epochs, Raw]

The MNE data object.

required
inverse_type str

The type of inverse solution to use. "SSM" -> Signal Subspace Matching. "AP" -> Alternating Projections. "RAP" -> Recursively Applied and Projected MUSIC.

'SSM'
n_orders int

Controls the maximum smoothness to pursue.

3
alpha float

The regularization parameter.

'auto'
n int / str

Number of eigenvalues to use. int: The number of eigenvalues to use. "L": L-curve method for automated selection. "drop": Selection based on relative change of eigenvalues. "auto": Combine L and drop method "mean": Selects the eigenvalues that are larger than the mean of all eigs.

'enhanced'
k int

Number of recursions.

'auto'
stop_crit float

Criterion to stop recursions. The lower, the more dipoles will be incorporated.

required
max_iter int

Maximum number of iterations during refinement.

5
diffusion_smoothing bool

Whether to use diffusion smoothing. Default is True.

True
diffusion_parameter float

The diffusion parameter (alpha). Default is 0.1.

0.1
adjacency_type str

The type of adjacency. "spatial" -> based on graph neighbors. "distance" -> based on distance

'spatial'
adjacency_distance float

The distance at which neighboring dipoles are considered neighbors.

0.003
depth_weights ndarray

The depth weights to use for depth weighting the leadfields. If None, no depth weighting is applied.

required
Return

self : object returns itself for convenience

Source code in invert/solvers/music/generalized_iterative.py
def make_inverse_operator(
    self,
    forward,
    mne_obj,
    *args,
    inverse_type="SSM",
    n_orders=3,
    alpha="auto",
    n="enhanced",
    k="auto",
    refine_solution=True,
    max_iter=5,
    diffusion_smoothing=True,
    diffusion_parameter=0.1,
    adjacency_type="spatial",
    adjacency_distance=3e-3,
    lambda_reg1=0.001,
    lambda_reg2=0.0001,
    lambda_reg3=0.0,
    **kwargs,
):
    """Calculate inverse operator.

    Parameters
    ----------
    forward : mne.Forward
        The mne-python Forward model instance.
    mne_obj : [mne.Evoked, mne.Epochs, mne.io.Raw]
        The MNE data object.
    inverse_type : str
        The type of inverse solution to use. "SSM" -> Signal Subspace Matching.
        "AP" -> Alternating Projections. "RAP" -> Recursively Applied and Projected MUSIC.
    n_orders : int
        Controls the maximum smoothness to pursue.
    alpha : float
        The regularization parameter.
    n : int/ str
        Number of eigenvalues to use.
            int: The number of eigenvalues to use.
            "L": L-curve method for automated selection.
            "drop": Selection based on relative change of eigenvalues.
            "auto": Combine L and drop method
            "mean": Selects the eigenvalues that are larger than the mean of all eigs.
    k : int
        Number of recursions.
    stop_crit : float
        Criterion to stop recursions. The lower, the more dipoles will be
        incorporated.
    max_iter : int
        Maximum number of iterations during refinement.
    diffusion_smoothing : bool
        Whether to use diffusion smoothing. Default is True.
    diffusion_parameter : float
        The diffusion parameter (alpha). Default is 0.1.
    adjacency_type : str
        The type of adjacency. "spatial" -> based on graph neighbors. "distance" -> based on distance
    adjacency_distance : float
        The distance at which neighboring dipoles are considered neighbors.
    depth_weights : numpy.ndarray
        The depth weights to use for depth weighting the leadfields. If None, no depth weighting is applied.

    Return
    ------
    self : object returns itself for convenience
    """
    super().make_inverse_operator(forward, *args, alpha=alpha, **kwargs)

    self.diffusion_smoothing = (diffusion_smoothing,)
    self.diffusion_parameter = diffusion_parameter
    self.n_orders = n_orders
    self.adjacency_type = adjacency_type
    self.adjacency_distance = adjacency_distance
    self.inverse_type = inverse_type
    data = self.unpack_data_obj(mne_obj)

    if not self.is_prepared:
        self.prepare_flex()

    if inverse_type == "SSM":
        self.get_source = self.get_source_ssm
        self.get_covariance = self.get_covariance_ssm
    elif inverse_type == "AP":
        self.get_source = self.get_source_ap
        self.get_covariance = self.get_covariance_ap
    elif inverse_type == "RAP":
        self.get_source = self.get_source_rap
        self.get_covariance = self.get_covariance_rap
    else:
        self.get_source = None
        raise AttributeError(f"Unknown inverse_type: {inverse_type}")

    inverse_operator = self.make_iterative_solution(
        data,
        n,
        k,
        max_iter=max_iter,
        refine_solution=refine_solution,
        lambda_reg1=lambda_reg1,
        lambda_reg2=lambda_reg2,
        lambda_reg3=lambda_reg3,
    )
    self.inverse_operators = [
        InverseOperator(inverse_operator, self.name),
    ]

    return self