Skip to content

Adaptive Alternating Projections

Solver ID: AAP

Usage

from invert import Solver

# fwd = ...    (mne.Forward object)
# evoked = ... (mne.Evoked object)

solver = Solver("AAP")
solver.make_inverse_operator(fwd)
stc = solver.apply_inverse_operator(evoked)
stc.plot()

Overview

Adaptive variant of alternating-projection source localization with flexible-extent patch estimation.

References

  1. Lukas Hecker 2025, unpublished
  2. Adler, A., Wax, M., & Pantazis, D. (2022). Brain Source Localization by Alternating Projection. In 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI) (pp. 1–5). IEEE.

API Reference

Bases: BaseSolver

Class for the Alternating Projections inverse solution [1] with flexible extent estimation (FLEX-AP). This approach combines the AP-approach by Adler et al. [1] with dipoles with flexible extents, e.g., FLEX-MUSIC (Hecker 2023, unpublished).

References

[1] Adler, A., Wax, M., & Pantazis, D. (2022, March). Brain Source Localization by Alternating Projection. In 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI) (pp. 1-5). IEEE.

Source code in invert/solvers/music/adaptive_alternating_projections.py
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
class SolverAdaptiveAlternatingProjections(BaseSolver):
    """Class for the Alternating Projections inverse solution [1] with flexible
        extent estimation (FLEX-AP). This approach combines the AP-approach by
        Adler et al. [1] with dipoles with flexible extents, e.g., FLEX-MUSIC
        (Hecker 2023, unpublished).

    References
    ---------
    [1] Adler, A., Wax, M., & Pantazis, D. (2022, March). Brain Source
    Localization by Alternating Projection. In 2022 IEEE 19th International
    Symposium on Biomedical Imaging (ISBI) (pp. 1-5). IEEE.

    """

    meta = SolverMeta(
        acronym="AAP",
        full_name="Adaptive Alternating Projections",
        category="Subspace Methods",
        description=(
            "Adaptive variant of alternating-projection source localization with "
            "flexible-extent patch estimation."
        ),
        references=[
            "Lukas Hecker 2025, unpublished",
            "Adler, A., Wax, M., & Pantazis, D. (2022). Brain Source Localization by Alternating Projection. In 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI) (pp. 1–5). IEEE.",
        ],
    )

    def __init__(
        self, name="Flexible Alternative Projections", scale_leadfield=False, **kwargs
    ):
        self.name = name
        self.is_prepared = False
        self.scale_leadfield = scale_leadfield
        return super().__init__(**kwargs)

    def make_inverse_operator(
        self,
        forward,
        mne_obj,
        *args,
        n_orders=3,
        alpha="auto",
        n="enhanced",
        k="auto",
        stop_crit=0.95,
        refine_solution=True,
        max_iter=1000,
        diffusion_smoothing=True,
        diffusion_parameter=0.1,
        adjacency_type="spatial",
        adjacency_distance=3e-3,
        depth_weights=None,
        **kwargs,
    ):
        """Calculate inverse operator.

        Parameters
        ----------
        forward : mne.Forward
            The mne-python Forward model instance.
        mne_obj : [mne.Evoked, mne.Epochs, mne.io.Raw]
            The MNE data object.
        alpha : float
            The regularization parameter.
        n : int/ str
            Number of eigenvalues to use.
                int: The number of eigenvalues to use.
                "L": L-curve method for automated selection.
                "drop": Selection based on relative change of eigenvalues.
                "auto": Combine L and drop method
                "mean": Selects the eigenvalues that are larger than the mean of all eigs.
        k : int
            Number of recursions.
        stop_crit : float
            Criterion to stop recursions. The lower, the more dipoles will be
            incorporated.
        max_iter : int
            Maximum number of iterations during refinement.
        diffusion_smoothing : bool
            Whether to use diffusion smoothing. Default is True.
        diffusion_parameter : float
            The diffusion parameter (alpha). Default is 0.1.
        adjacency_type : str
            The type of adjacency. "spatial" -> based on graph neighbors. "distance" -> based on distance
        adjacency_distance : float
            The distance at which neighboring dipoles are considered neighbors.
        depth_weights : numpy.ndarray
            The depth weights to use for depth weighting the leadfields. If None, no depth weighting is applied.

        Return
        ------
        self : object returns itself for convenience
        """
        super().make_inverse_operator(forward, *args, alpha=alpha, **kwargs)

        self.diffusion_smoothing = (diffusion_smoothing,)
        self.diffusion_parameter = diffusion_parameter
        self.n_orders = n_orders
        self.adjacency_type = adjacency_type
        self.adjacency_distance = adjacency_distance
        data = self.unpack_data_obj(mne_obj)

        if not self.is_prepared:
            self.prepare_flex()
        inverse_operator = self.make_ap(
            data,
            n,
            k,
            max_iter=max_iter,
            refine_solution=refine_solution,
            depth_weights=depth_weights,
        )
        self.inverse_operators = [
            InverseOperator(inverse_operator, self.name),
        ]
        return self

    def make_ap(
        self,
        y,
        n,
        k,
        refine_solution=True,
        max_iter=1000,
        covariance_type="AP",
        depth_weights=None,
        apply_depth_weights=True,
    ):
        """Create the FLEX-MUSIC inverse solution to the EEG data.

        Parameters
        ----------
        y : numpy.ndarray
            EEG data matrix (channels, time)
        n : int/ str
            Number of eigenvectors to use or "auto" for l-curve method.
        k : int
            Number of recursions.
        stop_crit : float
            Criterion to stop recursions. The lower, the more dipoles will be
            incorporated.
        refine_solution : bool
            If True: Re-visit each selected candidate and check if there is a
            better alternative.
        depth_weights : numpy.ndarray
            The depth weights to use for depth weighting the leadfields. If None, no depth weighting is applied.
        apply_depth_weights : bool
            Whether to apply depth weights to the leadfields.

        Return
        ------
        x_hat : numpy.ndarray
            Source data matrix (sources, time)
        """
        n_chans, n_dipoles = self.leadfield.shape
        y.shape[1]

        # leadfield -= leadfield.mean(axis=0)

        leadfields = self.leadfields
        n_orders = len(self.leadfields)
        if k == "auto":
            k = n_chans
        # Assert common average reference
        # y -= y.mean(axis=0)
        max_rank = 4
        min_change = 1.001

        # Compute Data Covariance
        if not isinstance(n, int):
            n_comp = self.estimate_n_sources(y, method=n)
        else:
            n_comp = n

        # MUSIC TYPE
        if covariance_type == "MUSIC":
            C = y @ y.T
            Q = np.identity(n_chans)
            U, D, _ = np.linalg.svd(C, full_matrices=False)

            Us = U[:, :n_comp]

            # MUSIC subspace-based Covariance
            C = Us @ Us.T

        elif covariance_type == "AP":  # Normal covariance
            mu = 0  # 1e-3
            C = y @ y.T + mu * np.trace(np.matmul(y, y.T)) * np.eye(
                y.shape[0]
            )  # Array Covariance matrix
        else:
            msg = f"covariance_type must be MUSIC or AP but is {covariance_type}"
            raise AttributeError(msg)

        S_AP = []
        # Initialization:  search the 1st source location over the entire
        # dipoles topographies space
        np.zeros((n_orders, n_dipoles))
        adjacency = mne.spatial_src_adjacency(self.forward["src"], verbose=0).toarray()
        L = leadfields[0]
        cluster_indices = []
        # initial_candidate
        norm_1 = np.einsum("ij,jk,ki->i", L.T, C, L)
        norm_2 = np.diag(
            L.T @ L
        )  # not necessary since leadfields were L2-normalized before
        result = norm_1 / norm_2

        last_power = np.max(result)
        cluster_indices.append(np.argmax(result))
        cluster_indices = np.array(cluster_indices)
        logger.debug(f"First index is {cluster_indices[0]} ({cluster_indices})")
        # print(f"adjacency={adjacency}")
        while True:
            new_pot_neighbors = list(
                set(
                    np.concatenate(
                        [np.where(adjacency[ci] == 1)[0] for ci in cluster_indices]
                    )
                )
            )
            new_pot_neighbors = np.setdiff1d(new_pot_neighbors, cluster_indices)
            traces = []
            for neighbor in new_pot_neighbors:
                # composite leafield of cluster_indices and neighbor
                L = np.hstack(
                    [
                        leadfields[0][:, cluster_indices],
                        leadfields[0][:, neighbor : neighbor + 1],
                    ]
                )
                U, _, _ = np.linalg.svd(L, full_matrices=False)
                U = U[:, :max_rank]
                norm_1 = np.einsum("ij,jk,ki->i", U.T, C, U)
                norm_2 = np.diag(
                    U.T @ U
                )  # not necessary since leadfields were L2-normalized before
                result = norm_1 / norm_2
                tr_current = np.sum(abs(result))
                traces.append(tr_current)

            if np.max(traces) >= last_power * min_change:
                cluster_indices = np.append(
                    cluster_indices, new_pot_neighbors[np.argmax(traces)]
                )
                last_power = np.sum(abs(result))
                logger.debug(
                    f"Added new dipole at {cluster_indices[-1]} because power was higher by {100 * np.max(traces) / last_power:.2f}  than {last_power}"
                )
            else:
                logger.debug("Stopping")
                break

        S_AP.append(cluster_indices)
        for ii in range(1, n_comp):
            A = np.stack(
                [leadfields[0][:, dipole] for dipole in np.concatenate(S_AP)], axis=1
            )
            P_A = A @ np.linalg.pinv(A.T @ A) @ A.T
            Q = np.identity(P_A.shape[0]) - P_A
            QC = Q @ C

            result = np.sum(U * (QC @ (Q @ U)), axis=0) / np.sum(
                U * (Q @ U), axis=0
            )  # fast and stable
            last_power = np.max(result)
            cluster_indices = np.array([np.argmax(result)])
            logger.debug(
                f"First index of source {ii} is {cluster_indices[0]} ({cluster_indices})"
            )

            while True:
                new_pot_neighbors = list(
                    set(
                        np.concatenate(
                            [np.where(adjacency[ci] == 1)[0] for ci in cluster_indices]
                        )
                    )
                )
                new_pot_neighbors = np.setdiff1d(new_pot_neighbors, cluster_indices)

                traces = []
                for neighbor in new_pot_neighbors:
                    # composite leafield of cluster_indices and neighbor
                    L = np.hstack(
                        [
                            leadfields[0][:, cluster_indices],
                            leadfields[0][:, neighbor : neighbor + 1],
                        ]
                    )
                    U, _, _ = np.linalg.svd(L, full_matrices=False)
                    U = U[:, :max_rank]

                    A = np.stack(
                        [leadfields[0][:, dipole] for dipole in np.concatenate(S_AP)],
                        axis=1,
                    )
                    P_A = A @ np.linalg.pinv(A.T @ A) @ A.T
                    Q = np.identity(P_A.shape[0]) - P_A
                    QC = Q @ C

                    result = np.sum(U * (QC @ (Q @ U)), axis=0) / np.sum(
                        U * (Q @ U), axis=0
                    )  # fast and stable

                    tr_current = np.sum(abs(result))
                    traces.append(tr_current)

                if np.max(traces) >= last_power * min_change:
                    cluster_indices = np.append(
                        cluster_indices, new_pot_neighbors[np.argmax(traces)]
                    )
                    last_power = np.sum(abs(result))
                    logger.debug(
                        f"Added new dipole at {cluster_indices[-1]} because power was higher by {100 * np.max(traces) / last_power:.2f}  than {last_power}"
                    )
                else:
                    logger.debug("Stopping")
                    break

            S_AP.append(cluster_indices)

        # refinement missing

        inverse_operator = np.zeros((n_dipoles, n_chans))

        nonzero = np.concatenate(S_AP)

        L = self.leadfield[:, nonzero]
        if depth_weights is not None:
            L = L * depth_weights[nonzero]

        # # Version 2: MNE vanilla
        inverse_operator[nonzero, :] = np.linalg.pinv(L.T @ L) @ L.T

        return inverse_operator

    # def prepare_flex(self):
    #     ''' Create the dictionary of increasingly smooth sources unless self.n_orders==0.

    #     Parameters
    #     ----------

    #     '''
    #     n_dipoles = self.leadfield.shape[1]
    #     I = np.identity(n_dipoles)
    #     if self.adjacency_type == "spatial":
    #         adjacency = mne.spatial_src_adjacency(self.forward['src'], verbose=0)
    #     else:
    #         adjacency = mne.spatial_dist_adjacency(self.forward['src'], self.adjacency_distance, verbose=None)

    #     LL = laplacian(adjacency)
    #     self.leadfields = [deepcopy(self.leadfield), ]
    #     self.gradients = [csr_matrix(I),]

    #     if self.diffusion_smoothing:
    #         smoothing_operator = csr_matrix(I - self.diffusion_parameter * LL)
    #     else:
    #         smoothing_operator = csr_matrix(abs(LL))

    #     for _ in range(self.n_orders):
    #         new_leadfield = self.leadfields[-1] @ smoothing_operator
    #         new_gradient = self.gradients[-1] @ smoothing_operator

    #         # Scaling? Not sure...
    #         if self.scale_leadfield:
    #             new_leadfield -= new_leadfield.mean(axis=0)
    #             new_leadfield /= np.linalg.norm(new_leadfield, axis=0)

    #         self.leadfields.append( new_leadfield )
    #         self.gradients.append( new_gradient )
    #     # scale and transform gradients
    #     for i in range(self.n_orders+1):
    #         # self.gradients[i] = self.gradients[i].toarray() / self.gradients[i].toarray().max(axis=0)
    #         row_max = self.gradients[i].max(axis=1).toarray().ravel()
    #         scaling_factors = 1 / row_max
    #         self.gradients[i] = csr_matrix(self.gradients[i].multiply(scaling_factors.reshape(-1, 1)))

    #     self.is_prepared = True

    def prepare_flex(self):
        """Create the dictionary of increasingly smooth sources unless
        self.n_orders==0. Flexibly selects diffusion parameter, too.

        Parameters
        ----------

        """
        n_dipoles = self.leadfield.shape[1]
        I = np.identity(n_dipoles)
        if self.adjacency_type == "spatial":
            adjacency = mne.spatial_src_adjacency(self.forward["src"], verbose=0)
        else:
            adjacency = mne.spatial_dist_adjacency(
                self.forward["src"], self.adjacency_distance, verbose=None
            )

        LL = laplacian(adjacency)
        self.leadfields = [
            deepcopy(self.leadfield),
        ]
        self.gradients = [
            csr_matrix(I),
        ]

        # if self.diffusion_smoothing:
        #     smoothing_operator = csr_matrix(I - self.diffusion_parameter * LL)
        # else:
        #     smoothing_operator = csr_matrix(abs(LL))
        if self.diffusion_parameter == "auto":
            alphas = [0.05, 0.075, 0.1, 0.125, 0.15, 0.175]
            smoothing_operators = [csr_matrix(I - alpha * LL) for alpha in alphas]
        else:
            smoothing_operators = [
                csr_matrix(I - self.diffusion_parameter * LL),
            ]

        for smoothing_operator in smoothing_operators:
            for i in range(self.n_orders):
                smoothing_operator_i = (
                    smoothing_operator ** (i + 1)
                )  # csr_matrix(np.linalg.matrix_power(smoothing_operator.toarray(), i+1))
                new_leadfield = self.leadfields[0] @ smoothing_operator_i
                new_gradient = self.gradients[0] @ smoothing_operator_i

                # Scaling? Not sure...
                if self.scale_leadfield:
                    # new_leadfield -= new_leadfield.mean(axis=0)
                    new_leadfield /= np.linalg.norm(new_leadfield, axis=0)

                self.leadfields.append(new_leadfield)
                self.gradients.append(new_gradient)
        # scale and transform gradients
        for i in range(len(self.gradients)):
            # self.gradients[i] = self.gradients[i].toarray() / self.gradients[i].toarray().max(axis=0)
            # row_max = self.gradients[i].max(axis=1).toarray().ravel()
            # scaling_factors = 1 / row_max
            row_sums = (
                self.gradients[i].sum(axis=1).ravel()
            )  # Compute the sum of each row
            scaling_factors = 1 / row_sums
            self.gradients[i] = csr_matrix(
                self.gradients[i].multiply(scaling_factors.reshape(-1, 1))
            )

        self.is_prepared = True

__init__

__init__(
    name="Flexible Alternative Projections",
    scale_leadfield=False,
    **kwargs,
)
Source code in invert/solvers/music/adaptive_alternating_projections.py
def __init__(
    self, name="Flexible Alternative Projections", scale_leadfield=False, **kwargs
):
    self.name = name
    self.is_prepared = False
    self.scale_leadfield = scale_leadfield
    return super().__init__(**kwargs)

make_inverse_operator

make_inverse_operator(
    forward,
    mne_obj,
    *args,
    n_orders=3,
    alpha="auto",
    n="enhanced",
    k="auto",
    stop_crit=0.95,
    refine_solution=True,
    max_iter=1000,
    diffusion_smoothing=True,
    diffusion_parameter=0.1,
    adjacency_type="spatial",
    adjacency_distance=0.003,
    depth_weights=None,
    **kwargs,
)

Calculate inverse operator.

Parameters:

Name Type Description Default
forward Forward

The mne-python Forward model instance.

required
mne_obj [Evoked, Epochs, Raw]

The MNE data object.

required
alpha float

The regularization parameter.

'auto'
n int / str

Number of eigenvalues to use. int: The number of eigenvalues to use. "L": L-curve method for automated selection. "drop": Selection based on relative change of eigenvalues. "auto": Combine L and drop method "mean": Selects the eigenvalues that are larger than the mean of all eigs.

'enhanced'
k int

Number of recursions.

'auto'
stop_crit float

Criterion to stop recursions. The lower, the more dipoles will be incorporated.

0.95
max_iter int

Maximum number of iterations during refinement.

1000
diffusion_smoothing bool

Whether to use diffusion smoothing. Default is True.

True
diffusion_parameter float

The diffusion parameter (alpha). Default is 0.1.

0.1
adjacency_type str

The type of adjacency. "spatial" -> based on graph neighbors. "distance" -> based on distance

'spatial'
adjacency_distance float

The distance at which neighboring dipoles are considered neighbors.

0.003
depth_weights ndarray

The depth weights to use for depth weighting the leadfields. If None, no depth weighting is applied.

None
Return

self : object returns itself for convenience

Source code in invert/solvers/music/adaptive_alternating_projections.py
def make_inverse_operator(
    self,
    forward,
    mne_obj,
    *args,
    n_orders=3,
    alpha="auto",
    n="enhanced",
    k="auto",
    stop_crit=0.95,
    refine_solution=True,
    max_iter=1000,
    diffusion_smoothing=True,
    diffusion_parameter=0.1,
    adjacency_type="spatial",
    adjacency_distance=3e-3,
    depth_weights=None,
    **kwargs,
):
    """Calculate inverse operator.

    Parameters
    ----------
    forward : mne.Forward
        The mne-python Forward model instance.
    mne_obj : [mne.Evoked, mne.Epochs, mne.io.Raw]
        The MNE data object.
    alpha : float
        The regularization parameter.
    n : int/ str
        Number of eigenvalues to use.
            int: The number of eigenvalues to use.
            "L": L-curve method for automated selection.
            "drop": Selection based on relative change of eigenvalues.
            "auto": Combine L and drop method
            "mean": Selects the eigenvalues that are larger than the mean of all eigs.
    k : int
        Number of recursions.
    stop_crit : float
        Criterion to stop recursions. The lower, the more dipoles will be
        incorporated.
    max_iter : int
        Maximum number of iterations during refinement.
    diffusion_smoothing : bool
        Whether to use diffusion smoothing. Default is True.
    diffusion_parameter : float
        The diffusion parameter (alpha). Default is 0.1.
    adjacency_type : str
        The type of adjacency. "spatial" -> based on graph neighbors. "distance" -> based on distance
    adjacency_distance : float
        The distance at which neighboring dipoles are considered neighbors.
    depth_weights : numpy.ndarray
        The depth weights to use for depth weighting the leadfields. If None, no depth weighting is applied.

    Return
    ------
    self : object returns itself for convenience
    """
    super().make_inverse_operator(forward, *args, alpha=alpha, **kwargs)

    self.diffusion_smoothing = (diffusion_smoothing,)
    self.diffusion_parameter = diffusion_parameter
    self.n_orders = n_orders
    self.adjacency_type = adjacency_type
    self.adjacency_distance = adjacency_distance
    data = self.unpack_data_obj(mne_obj)

    if not self.is_prepared:
        self.prepare_flex()
    inverse_operator = self.make_ap(
        data,
        n,
        k,
        max_iter=max_iter,
        refine_solution=refine_solution,
        depth_weights=depth_weights,
    )
    self.inverse_operators = [
        InverseOperator(inverse_operator, self.name),
    ]
    return self