Graph Total Variation (Huber)¶
Solver ID: TV
Usage¶
from invert import Solver
# fwd = ... (mne.Forward object)
# evoked = ... (mne.Evoked object)
solver = Solver("TV")
solver.make_inverse_operator(fwd)
stc = solver.apply_inverse_operator(evoked)
stc.plot()
Overview¶
Iteratively reweighted graph-TV (edge-preserving) regularizer on the source-space mesh adjacency.
References¶
- Rudin, L. I., Osher, S., & Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena, 60(1–4), 259–268.
- Huber, P. J. (1964). Robust estimation of a location parameter. The Annals of Mathematical Statistics, 35(1), 73–101.
API Reference¶
Bases: BaseSolver
Edge-preserving structured regularization via (Huber) graph total variation.
Uses an iteratively reweighted quadratic approximation of a graph TV penalty on the source-space adjacency. Each IRLS step solves a symmetric positive definite linear system via conjugate gradients in implicit form.
Source code in invert/solvers/minimum_norm/total_variation.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 | |
__init__ ¶
make_inverse_operator ¶
Source code in invert/solvers/minimum_norm/total_variation.py
apply_inverse_operator ¶
apply_inverse_operator(
mne_obj,
tv_weight: float = 0.1,
n_irls: int = 8,
eps: float = 0.001,
ridge: float | None = None,
cg_tol: float = 0.0001,
cg_max_iter: int = 200,
)