Standardized Low Resolution Electromagnetic Tomography¶
Solver ID: sLORETA
Usage¶
from invert import Solver
# fwd = ... (mne.Forward object)
# evoked = ... (mne.Evoked object)
solver = Solver("sLORETA")
solver.make_inverse_operator(fwd)
stc = solver.apply_inverse_operator(evoked)
stc.plot()
Overview¶
Standardized (variance-normalized) LORETA/MNE-type inverse designed to reduce localization bias by normalizing each source by its estimated variance.
References¶
- Pascual-Marqui, R. D. (2002). Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods and Findings in Experimental and Clinical Pharmacology, 24(Suppl D), 5–12.
API Reference¶
Bases: BaseSolver
Class for the standardized Low Resolution Tomography (sLORETA) inverse solution [1].
When alpha="auto", regularization selection (L-curve, GCV, product) is
performed on the underlying MNE kernel. Once the optimal regularization
parameter has been identified, the sLORETA standardization is applied only
to that selected kernel. This avoids the problem of comparing differently-
standardized operators across alpha values.
References
[1] Pascual-Marqui, R. D. (2002). Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol, 24(Suppl D), 5-12.
Source code in invert/solvers/minimum_norm/sloreta.py
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 | |
__init__ ¶
make_inverse_operator ¶
Calculate inverse operator.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
forward
|
Forward
|
The mne-python Forward model instance. |
required |
alpha
|
float | 'auto'
|
The regularization parameter. When set to "auto", regularization selection is performed on the MNE kernel and sLORETA standardization is applied afterwards. |
'auto'
|
Return
self : object returns itself for convenience
Source code in invert/solvers/minimum_norm/sloreta.py
apply_inverse_operator ¶
Apply the inverse operator.
Regularization selection is performed using the MNE kernels stored in
self.inverse_operators. The returned source estimate is computed
with the sLORETA-standardized kernel at the selected regularization
index.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
mne_obj
|
Evoked | Epochs | Raw
|
The MNE data object. |
required |
Return
stc : mne.SourceEstimate The source estimate.