S-MAP (Quadratic + Spatial MAP)¶
Solver ID: S-MAP
Usage¶
from invert import Solver
# fwd = ... (mne.Forward object)
# evoked = ... (mne.Evoked object)
solver = Solver("S-MAP")
solver.make_inverse_operator(fwd)
stc = solver.apply_inverse_operator(evoked)
stc.plot()
Overview¶
MAP-style quadratic inverse with spatial regularization via a graph Laplacian over the source space.
References¶
- Baillet, S., & Garnero, L. (1997). A Bayesian approach to introducing anatomo-functional priors in the EEG/MEG inverse problem. IEEE Transactions on Biomedical Engineering, 44(5), 374–385.
API Reference¶
Bases: BaseSolver
Class for the Quadratic regularization and spatial regularization (S-MAP) inverse solution [1].
References
[1] Baillet, S., & Garnero, L. (1997). A Bayesian approach to introducing anatomo-functional priors in the EEG/MEG inverse problem. IEEE transactions on Biomedical Engineering, 44(5), 374-385.
Source code in invert/solvers/minimum_norm/smap.py
__init__ ¶
make_inverse_operator ¶
Calculate inverse operator.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
forward
|
Forward
|
The mne-python Forward model instance. |
required |
alpha
|
float
|
The regularization parameter. |
'auto'
|
Return
self : object returns itself for convenience