Mixed-Norm Estimate (L1/L2)¶
Solver ID: MxNE
Usage¶
from invert import Solver
# fwd = ... (mne.Forward object)
# evoked = ... (mne.Evoked object)
solver = Solver("MxNE")
solver.make_inverse_operator(fwd)
stc = solver.apply_inverse_operator(evoked)
stc.plot()
Overview¶
Mixed-norm (L1/L2) inverse that promotes group sparsity across time by applying an L1 penalty over sources and an L2 norm over each source time course.
References¶
- Gramfort, A., Kowalski, M., & Hämäläinen, M. (2012). Mixed-norm estimates for the M/EEG inverse problem using accelerated gradient methods. Physics in Medicine and Biology, 57(7), 1937–1961.
API Reference¶
Bases: BaseSolver
Class for the Minimum L1-L2 Norm solution (MCE) inverse solution. It imposes a L1 norm on the source and L2 on the source time courses.
References
[!] Missing reference - please contact developers if you have it!
Source code in invert/solvers/minimum_norm/minimum_l1_l2_norm.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 | |
__init__ ¶
make_inverse_operator ¶
Calculate inverse operator.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
forward
|
Forward
|
The mne-python Forward model instance. |
required |
alpha
|
float
|
The regularization parameter. |
0.01
|
Return
self : object returns itself for convenience
Source code in invert/solvers/minimum_norm/minimum_l1_l2_norm.py
apply_inverse_operator ¶
apply_inverse_operator(
mne_obj,
alpha="auto",
max_iter=1000,
l1_spatial=0.05,
l2_temporal=0,
tol=0.0001,
depth_weighting=0.0,
center_data=True,
scale_l1_by_lmax=True,
) -> mne.SourceEstimate
Apply the inverse operator.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
mne_obj
|
[Evoked, Epochs, Raw]
|
The MNE data object. |
required |
max_iter
|
int
|
Maximum number of iterations |
1000
|
l1_spatial
|
float
|
Controls the spatial L1 regularization |
0.05
|
l2_temporal
|
float
|
Controls additional temporal ridge regularization. |
0
|
tol
|
float
|
Tolerance at which convergence is met. |
0.0001
|
depth_weighting
|
float
|
Exponent for depth weighting compensation (0 = no weighting, 1 = full compensation). Default 0.0 disables depth weighting. Use 0 to disable depth weighting entirely. |
0.0
|
center_data
|
bool
|
If True, subtract the per-timepoint channel mean from data. |
True
|
scale_l1_by_lmax
|
bool
|
If True, interpret |
True
|
Return
stc : mne.SourceEstimate The mne Source Estimate object.