Low Resolution Electromagnetic Tomography¶
Solver ID: LORETA
Usage¶
from invert import Solver
# fwd = ... (mne.Forward object)
# evoked = ... (mne.Evoked object)
solver = Solver("LORETA")
solver.make_inverse_operator(fwd)
stc = solver.apply_inverse_operator(evoked)
stc.plot()
Overview¶
Smoothness-constrained minimum-norm inverse that penalizes spatial roughness via a Laplacian operator on the source space.
References¶
- Pascual-Marqui, R. D., Michel, C. M., & Lehmann, D. (1994). Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. International Journal of Psychophysiology, 18(1), 49–65.
API Reference¶
Bases: BaseSolver
Class for the Low Resolution Tomography (LORETA) inverse solution.
References
[1] Pascual-Marqui, R. D. (1999). Review of methods for solving the EEG inverse problem. International journal of bioelectromagnetism, 1(1), 75-86.
Source code in invert/solvers/minimum_norm/loreta.py
__init__ ¶
make_inverse_operator ¶
Calculate inverse operator.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
forward
|
Forward
|
The mne-python Forward model instance. |
required |
alpha
|
float
|
The regularization parameter. |
'auto'
|
Return
self : object returns itself for convenience