Local Auto-Regressive Average¶
Solver ID: LAURA
Usage¶
from invert import Solver
# fwd = ... (mne.Forward object)
# evoked = ... (mne.Evoked object)
solver = Solver("LAURA")
solver.make_inverse_operator(fwd)
stc = solver.apply_inverse_operator(evoked)
stc.plot()
Overview¶
Spatially weighted minimum-norm inverse using local neighborhood constraints (LAURA) to encourage physiologically plausible smoothness.
References¶
- Grave de Peralta Menendez, R., Murray, M. M., Michel, C. M., Martuzzi, R., & Gonzalez Andino, S. L. (2004). Electrical neuroimaging based on biophysical constraints. NeuroImage, 21(2), 527–539.
API Reference¶
Bases: BaseSolver
Local AUtoRegressive Average (LAURA) inverse solution.
LAURA uses spatially weighted source priors based on electromagnetic field decay laws (1/r^2 for potentials, 1/r^3 for currents) to enforce biophysically plausible spatial smoothness.
Optional extensions (disabled by default for pure LAURA): - depth_weight: Depth bias correction (Lin et al. 2006) - use_mesh_adjacency: Restrict neighbors to mesh-connected sources
References
[1] Grave de Peralta Menendez, R., et al. (2004). Electrical neuroimaging based on biophysical constraints. NeuroImage, 21(2), 527-539. [2] Lin, F. H., et al. (2006). Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates.
Source code in invert/solvers/minimum_norm/laura.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 | |
__init__ ¶
Source code in invert/solvers/minimum_norm/laura.py
make_inverse_operator ¶
make_inverse_operator(
forward,
*args,
noise_cov=None,
alpha="auto",
drop_off=2,
verbose=0,
**kwargs,
)
Calculate inverse operator.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
forward
|
Forward
|
The mne-python Forward model instance. |
required |
alpha
|
float or auto
|
The regularization parameter. |
'auto'
|
noise_cov
|
ndarray
|
The noise covariance matrix. If None, identity is used. |
None
|
drop_off
|
float
|
Controls the steepness of the spatial weighting distribution. Default is 2. |
2
|
verbose
|
int
|
Verbosity level. |
0
|
Return
self : object returns itself for convenience
Source code in invert/solvers/minimum_norm/laura.py
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 | |