Dynamic Statistical Parametric Mapping¶
Solver ID: dSPM
Usage¶
from invert import Solver
# fwd = ... (mne.Forward object)
# evoked = ... (mne.Evoked object)
solver = Solver("dSPM")
solver.make_inverse_operator(fwd)
stc = solver.apply_inverse_operator(evoked)
stc.plot()
Overview¶
Noise-normalized minimum-norm inverse (MNE) that yields statistical maps by scaling the MNE estimate with an estimate of its variance.
References¶
- Dale, A. M., Liu, A. K., Fischl, B. R., Buckner, R. L., Belliveau, J. W., Lewine, J. D., & Halgren, E. (2000). Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron, 26(1), 55–67.
API Reference¶
Bases: BaseSolver
Class for the Dynamic Statistical Parametric Mapping (dSPM) inverse solution [1,2]. The formulas provided by [3] were used for implementation.
References
[1] Dale, A. M., Liu, A. K., Fischl, B. R., Buckner, R. L., Belliveau, J. W., Lewine, J. D., & Halgren, E. (2000). Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. neuron, 26(1), 55-67.
[2] Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis: I. Segmentation and surface reconstruction. Neuroimage, 9(2), 179-194.
[3] Grech, R., Cassar, T., Muscat, J., Camilleri, K. P., Fabri, S. G., Zervakis, M., ... & Vanrumste, B. (2008). Review on solving the inverse problem in EEG source analysis. Journal of neuroengineering and rehabilitation, 5(1), 1-33.
Source code in invert/solvers/minimum_norm/dspm.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 | |
__init__ ¶
make_inverse_operator ¶
make_inverse_operator(
forward,
*args,
alpha="auto",
noise_cov=None,
source_cov=None,
verbose=0,
**kwargs,
)
Calculate inverse operator.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
forward
|
Forward
|
The mne-python Forward model instance. |
required |
alpha
|
float
|
The regularization parameter. |
'auto'
|
noise_cov
|
ndarray
|
The noise covariance matrix (channels x channels). |
None
|
source_cov
|
ndarray
|
The source covariance matrix (dipoles x dipoles). This can be used if prior information, e.g., from fMRI images, is available. |
None
|
Return
self : object returns itself for convenience