Sequential Semi-Analytic Monte Carlo Estimation¶
Solver ID: SESAME
Usage¶
from invert import Solver
# fwd = ... (mne.Forward object)
# evoked = ... (mne.Evoked object)
solver = Solver("SESAME")
solver.make_inverse_operator(fwd)
stc = solver.apply_inverse_operator(evoked)
stc.plot()
Overview¶
SESAME-style sequential Monte Carlo dipole fitting on a discrete source grid.
References¶
- Sommariva, S., & Sorrentino, A. (2014). Sequential Monte Carlo samplers for semi-linear inverse problems and application to magnetoencephalography. Inverse Problems, 30(11), 114020.
API Reference¶
Bases: BaseSolver
SESAME-style dipole localization via Sequential Monte Carlo (SMC).
This is a lightweight, discrete-grid implementation inspired by SESAME: it approximates the posterior over a small set of dipole locations using sequential importance sampling with resampling. Dipole positions are restricted to the vertices in the provided source space.
Notes
- The algorithm is stochastic; use
random_statefor reproducibility. - The forward model is converted to fixed orientation by BaseSolver.
- The output is sparse with
n_dipolesactive vertices.
Source code in invert/solvers/dipoles/sesame.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 | |
__init__ ¶
make_inverse_operator ¶
make_inverse_operator(
forward,
mne_obj,
*args: Any,
alpha: str | float = "auto",
n: int | str | None = None,
n_dipoles: int | str | None = None,
n_particles: int = 64,
n_candidates: int = 256,
resample_threshold: float = 0.5,
max_dipoles: int = 4,
min_rel_rss_improvement: float = 0.02,
noise_var: float | str = "auto",
random_state: int | None = 0,
**kwargs: Any,
)
Source code in invert/solvers/dipoles/sesame.py
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 | |