Unit-Noise-Gain Beamformer¶
Solver ID: UNIT_NOISE_GAIN
Usage¶
from invert import Solver
# fwd = ... (mne.Forward object)
# evoked = ... (mne.Evoked object)
solver = Solver("UNIT_NOISE_GAIN")
solver.make_inverse_operator(fwd)
stc = solver.apply_inverse_operator(evoked)
stc.plot()
Overview¶
Minimum-variance beamformer variant using unit-noise-gain weight normalization (as implemented here).
References¶
- tbd
API Reference¶
Bases: BaseSolver
Class for the Unit Noise Gain (UNIG) Beamformer inverse solution [1].
References
[1]
Source code in invert/solvers/beamformers/unit_noise_gain.py
__init__ ¶
make_inverse_operator ¶
make_inverse_operator(
forward,
mne_obj,
*args,
weight_norm=True,
noise_cov=None,
alpha="auto",
verbose=0,
**kwargs,
)
Calculate inverse operator.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
forward
|
Forward
|
The mne-python Forward model instance. |
required |
mne_obj
|
[Evoked, Epochs, Raw]
|
The MNE data object. |
required |
weight_norm
|
bool
|
Normalize the filter weight matrix W to unit length of the columns. |
True
|
alpha
|
float
|
The regularization parameter. |
'auto'
|
Return
self : object returns itself for convenience