Subspace Pursuit + Iteratively Reweighted ESMV¶
Solver ID: SSP_IRESMV
Usage¶
from invert import Solver
# fwd = ... (mne.Forward object)
# evoked = ... (mne.Evoked object)
solver = Solver("SSP_IRESMV")
solver.make_inverse_operator(fwd)
stc = solver.apply_inverse_operator(evoked)
stc.plot()
Overview¶
Two-phase solver that uses Subspace Pursuit for initialization and iteratively reweighted ESMV (FOCUSS/IRLS-inspired) for refinement.
References¶
- Lukas Hecker (2025). Unpublished.
- Dai, W., & Milenkovic, O. (2009). Subspace pursuit for compressive sensing signal reconstruction. IEEE Transactions on Information Theory, 55(5), 2230-2249.
- Jonmohamadi, Y., Poudel, G., Innes, C., Weiss, D., Krueger, R., & Jones, R. (2014). Comparison of beamformers for EEG source signal reconstruction. Biomedical Signal Processing and Control, 14, 175-188.
- Gorodnitsky, I. F., & Rao, B. D. (1997). Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm. IEEE Transactions on Signal Processing, 45(3), 600-616.
API Reference¶
Bases: BaseSolver
SSP-initialized Iteratively Reweighted ESMV (SSP-IR-ESMV).
Two-phase solver: 1. SSP greedy pursuit identifies an initial sparse support set. 2. Iteratively reweighted ESMV refines amplitudes and support, initialized with the SSP support as a warm start.
This combines SSP's localization accuracy with IR-ESMV's ability to refine source amplitudes through iterative reweighting.
Source code in invert/solvers/beamformers/ssp_iresmv.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 | |
__init__ ¶
__init__(
name="SSP-IR-ESMV",
reduce_rank=True,
rank="auto",
n_iterations=4,
sparsity_exponent=0.5,
**kwargs,
)