Subspace Pursuit + ESMV¶
Solver ID: SSP_ESMV
Usage¶
from invert import Solver
# fwd = ... (mne.Forward object)
# evoked = ... (mne.Evoked object)
solver = Solver("SSP_ESMV")
solver.make_inverse_operator(fwd)
stc = solver.apply_inverse_operator(evoked)
stc.plot()
Overview¶
Hybrid solver that uses Subspace Pursuit to identify a sparse support set, then applies ESMV-style beamforming on the reduced problem.
References¶
- Lukas Hecker (2025). Unpublished.
- Dai, W., & Milenkovic, O. (2009). Subspace pursuit for compressive sensing signal reconstruction. IEEE Transactions on Information Theory, 55(5), 2230-2249.
- Jonmohamadi, Y., Poudel, G., Innes, C., Weiss, D., Krueger, R., & Jones, R. (2014). Comparison of beamformers for EEG source signal reconstruction. Biomedical Signal Processing and Control, 14, 175-188.
API Reference¶
Bases: BaseSolver
Hybrid Simultaneous Subspace Pursuit + Eigenspace Minimum Variance solver.
Combines SSP's greedy sparse support identification with ESMV's eigenspace-projected beamforming for amplitude recovery. This targets the highly underdetermined scenario (e.g., 4-channel Muse headband) where localization accuracy (SSP's strength) and amplitude fidelity (ESMV's strength) are both critical.
Algorithm
- Normalize leadfield columns for unbiased atom selection.
- Run SSP iterations to identify the sparse support set T.
- Build a reduced leadfield from the support set.
- Apply ESMV-style eigenspace beamforming on the reduced problem to get accurate amplitude estimates.
References
SSP: Dai & Milenkovic (2009). Subspace pursuit for compressive sensing. ESMV: Jonmohamadi et al. (2014). Comparison of beamformers for EEG.
Source code in invert/solvers/beamformers/ssp_esmv.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 | |