Synthetic Aperture Magnetometry¶
Solver ID: SAM
Usage¶
from invert import Solver
# fwd = ... (mne.Forward object)
# evoked = ... (mne.Evoked object)
solver = Solver("SAM")
solver.make_inverse_operator(fwd)
stc = solver.apply_inverse_operator(evoked)
stc.plot()
Overview¶
Synthetic Aperture Magnetometry (SAM) beamformer implementation for time-domain source power estimation.
References¶
- Robinson, S. E., & Vrba, J. (1999). Functional neuroimaging by synthetic aperture magnetometry (SAM). In Recent Advances in Biomagnetism.
API Reference¶
Bases: BaseSolver
Class for the Synthetic Aperture Magnetometry Beamformer (SAM) inverse solution [1].
References
[1] Robinson, S. E. V. J. (1999). Functional neuroimaging by synthetic aperture magnetometry (SAM). Recent advances in biomagnetism.
Source code in invert/solvers/beamformers/sam.py
__init__ ¶
make_inverse_operator ¶
make_inverse_operator(
forward,
mne_obj,
*args,
weight_norm=True,
alpha="auto",
verbose=0,
**kwargs,
)
Calculate inverse operator.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
forward
|
Forward
|
The mne-python Forward model instance. |
required |
mne_obj
|
[Evoked, Epochs, Raw]
|
The MNE data object. |
required |
weight_norm
|
bool
|
Normalize the filter weight matrix W to unit length of the columns. |
True
|
alpha
|
float
|
The regularization parameter. |
'auto'
|
Return
self : object returns itself for convenience