Minimum Variance Adaptive Beamformer¶
Solver ID: MVAB
Usage¶
from invert import Solver
# fwd = ... (mne.Forward object)
# evoked = ... (mne.Evoked object)
solver = Solver("MVAB")
solver.make_inverse_operator(fwd)
stc = solver.apply_inverse_operator(evoked)
stc.plot()
Overview¶
Minimum-variance adaptive beamformer implementation, including regularization (as implemented here).
References¶
- Vorobyov, S. A. (2013). Principles of minimum variance robust adaptive beamforming design. Signal Processing, 93(12), 3264-3277.
API Reference¶
Bases: BaseSolver
Class for the Minimum Variance Adaptive Beamformer (MVAB) inverse solution.
References
[1] Vorobyov, S. A. (2013). Principles of minimum variance robust adaptive beamforming design. Signal Processing, 93(12), 3264-3277.
Source code in invert/solvers/beamformers/mvab.py
__init__ ¶
make_inverse_operator ¶
Calculate inverse operator.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
forward
|
Forward
|
The mne-python Forward model instance. |
required |
mne_obj
|
[Evoked, Epochs, Raw]
|
The MNE data object. |
required |
alpha
|
float
|
The regularization parameter. |
'auto'
|
Return
self : object returns itself for convenience