Higher-Order Covariance Minimum Variance¶
Solver ID: HOCMV
Usage¶
from invert import Solver
# fwd = ... (mne.Forward object)
# evoked = ... (mne.Evoked object)
solver = Solver("HOCMV")
solver.make_inverse_operator(fwd)
stc = solver.apply_inverse_operator(evoked)
stc.plot()
Overview¶
Minimum-variance beamformer using higher-order covariance statistics (as implemented here).
References¶
- Jonmohamadi, Y., Poudel, G., Innes, C., Weiss, D., Krueger, R., & Jones, R. (2014). Comparison of beamformers for EEG source signal reconstruction. Biomedical Signal Processing and Control, 14, 175-188.
API Reference¶
Bases: BaseSolver
Class for the Higher-Order Covariance Minimum Variance (HOCMV) Beamformer inverse solution [1].
References
[1] Jonmohamadi, Y., Poudel, G., Innes, C., Weiss, D., Krueger, R., & Jones, R. (2014). Comparison of beamformers for EEG source signal reconstruction. Biomedical Signal Processing and Control, 14, 175-188.
Source code in invert/solvers/beamformers/hocmv.py
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 | |
__init__ ¶
make_inverse_operator ¶
make_inverse_operator(
forward,
mne_obj,
*args,
weight_norm=True,
alpha="auto",
order=3,
verbose=0,
**kwargs,
)
Calculate inverse operator.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
forward
|
Forward
|
The mne-python Forward model instance. |
required |
mne_obj
|
[Evoked, Epochs, Raw]
|
The MNE data object. |
required |
weight_norm
|
bool
|
Normalize the filter weight matrix W to unit length of the columns. |
True
|
alpha
|
float
|
The regularization parameter. |
'auto'
|
order
|
int
|
The order of the covariance matrix. Should be a positive integer not evenly divisible by two {3, 5, 7, ...} |
3
|
Return
self : object returns itself for convenience