Eigenspace-based Minimum Variance¶
Solver ID: ESMV
Usage¶
from invert import Solver
# fwd = ... (mne.Forward object)
# evoked = ... (mne.Evoked object)
solver = Solver("ESMV")
solver.make_inverse_operator(fwd)
stc = solver.apply_inverse_operator(evoked)
stc.plot()
Overview¶
Eigenspace-projected minimum-variance beamformer (ESMV), using a signal-subspace projection of the classic MV filter.
References¶
- Jonmohamadi, Y., Poudel, G., Innes, C., Weiss, D., Krueger, R., & Jones, R. (2014). Comparison of beamformers for EEG source signal reconstruction. Biomedical Signal Processing and Control, 14, 175-188.
API Reference¶
Bases: BaseSolver
Class for the Eigenspace-based Minimum Variance (ESMV) Beamformer inverse solution [1].
References
[1] Jonmohamadi, Y., Poudel, G., Innes, C., Weiss, D., Krueger, R., & Jones, R. (2014). Comparison of beamformers for EEG source signal reconstruction. Biomedical Signal Processing and Control, 14, 175-188.
Source code in invert/solvers/beamformers/esmv.py
__init__ ¶
make_inverse_operator ¶
Calculate inverse operator.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
forward
|
Forward
|
The mne-python Forward model instance. |
required |
mne_obj
|
[Evoked, Epochs, Raw]
|
The MNE data object. |
required |
alpha
|
float
|
The regularization parameter. |
'auto'
|
Return
self : object returns itself for convenience