Variational Bayes Sparse Bayesian Learning¶
Solver ID: VB-SBL
Usage¶
from invert import Solver
# fwd = ... (mne.Forward object)
# evoked = ... (mne.Evoked object)
solver = Solver("VB-SBL")
solver.make_inverse_operator(fwd)
stc = solver.apply_inverse_operator(evoked)
stc.plot()
Overview¶
Variational Bayesian ARD/SBL solver with Gamma hyperpriors, implemented with efficient sensor-space updates.
References¶
- Tipping, M. E. (2001). Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 1, 211–244.
- Wipf, D., & Nagarajan, S. (2009). A unified Bayesian framework for MEG/EEG source imaging. NeuroImage, 44(3), 947–966.
API Reference¶
Bases: BaseSolver
Variational Bayes Sparse Bayesian Learning (VB-SBL).
Hierarchical model: Y = L X + E X_i,t ~ N(0, γ_i) γ_i governed by a Gamma hyperprior on the corresponding precision.
The implementation uses efficient sensor-space updates (invert m×m matrices) and returns the posterior mean as a linear inverse operator.
Source code in invert/solvers/bayesian/vb_sbl.py
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 | |
__init__ ¶
make_inverse_operator ¶
make_inverse_operator(
forward,
mne_obj,
*args: Any,
alpha: str | float = "auto",
max_iter: int = 300,
noise_cov: ndarray | None = None,
prune: bool = True,
pruning_thresh: float = 0.0001,
convergence_criterion: float = 1e-06,
**kwargs: Any,
)