Source MAP with MSP Priors¶
Solver ID: Source-MAP-MSP
Usage¶
from invert import Solver
# fwd = ... (mne.Forward object)
# evoked = ... (mne.Evoked object)
solver = Solver("Source-MAP-MSP")
solver.make_inverse_operator(fwd)
stc = solver.apply_inverse_operator(evoked)
stc.plot()
Overview¶
Source-MAP sparse Bayesian inverse approach augmented with MSP-style spatial priors/patch smoothing (conceptually related to MSP).
References¶
- Wipf, D., & Nagarajan, S. (2009). A unified Bayesian framework for MEG/EEG source imaging. NeuroImage, 44(3), 947–966.
- Friston, K., Harrison, L., Daunizeau, J., Kiebel, S., Phillips, C., Trujillo-Barreto, N., & Mattout, J. (2008). Multiple sparse priors for the M/EEG inverse problem. NeuroImage, 39(3), 1104–1120.
API Reference¶
Bases: BaseSolver
Class for the Source Maximum A Posteriori (Source-MAP) inverse solution using multiple sparse priors [1]. The method is conceptually similar to [2], but formally not equal.
References
[1] Wipf, D., & Nagarajan, S. (2009). A unified Bayesian framework for MEG/EEG source imaging. NeuroImage, 44(3), 947-966.
[2] Friston, K., Harrison, L., Daunizeau, J., Kiebel, S., Phillips, C., Trujillo-Barreto, N., ... & Mattout, J. (2008). Multiple sparse priors for the M/EEG inverse problem. NeuroImage, 39(3), 1104-1120.
Source code in invert/solvers/bayesian/source_map_msp.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 | |
__init__ ¶
make_inverse_operator ¶
make_inverse_operator(
forward,
mne_obj,
*args,
alpha="auto",
max_iter=100,
p=0.5,
smoothness_order=1,
verbose=0,
**kwargs,
)
Calculate inverse operator.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
forward
|
Forward
|
The mne-python Forward model instance. |
required |
mne_obj
|
[Evoked, Epochs, Raw]
|
The MNE data object. |
required |
alpha
|
float
|
The regularization parameter. |
'auto'
|
p
|
0 < p < 2
|
Hyperparameter which controls sparsity. Default: p = 0.5 |
0.5
|
max_iter
|
int
|
Maximum numbers of iterations to find the optimal hyperparameters. max_iter = 1 corresponds to sLORETA. |
100
|
smoothness_order
|
int
|
Controls the smoothness prior. The higher this integer, the higher the pursued smoothness of the inverse solution. |
1
|
Return
self : object returns itself for convenience