Gamma MAP with MSP Priors¶
Solver ID: Gamma-MAP-MSP
Usage¶
from invert import Solver
# fwd = ... (mne.Forward object)
# evoked = ... (mne.Evoked object)
solver = Solver("Gamma-MAP-MSP")
solver.make_inverse_operator(fwd)
stc = solver.apply_inverse_operator(evoked)
stc.plot()
Overview¶
Gamma-MAP sparse Bayesian inverse approach combined with MSP-style spatial smoothness/patch priors.
References¶
- Wipf, D., & Nagarajan, S. (2009). A unified Bayesian framework for MEG/EEG source imaging. NeuroImage, 44(3), 947–966.
API Reference¶
Bases: BaseSolver
Class for the Gamma Maximum A Posteriori (Gamma-MAP) inverse solution using multiple sparse priors (MSP).
References
Wipf, D., & Nagarajan, S. (2009). A unified Bayesian framework for MEG/EEG source imaging. NeuroImage, 44(3), 947-966.
Source code in invert/solvers/bayesian/gamma_map_msp.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 | |
__init__ ¶
make_inverse_operator ¶
make_inverse_operator(
forward,
mne_obj,
*args,
alpha="auto",
max_iter=100,
p=0.5,
smoothness_order=1,
verbose=0,
**kwargs,
)
Calculate inverse operator.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
forward
|
Forward
|
The mne-python Forward model instance. |
required |
mne_obj
|
[Evoked, Epochs, Raw]
|
The MNE data object. |
required |
alpha
|
float
|
The regularization parameter. |
'auto'
|
max_iter
|
int
|
Maximum numbers of iterations to find the optimal hyperparameters. max_iter = 1 corresponds to sLORETA-like solution. |
100
|
p
|
0 < p < 2
|
Hyperparameter which controls sparsity. Default: p = 0 |
0.5
|
smoothness_order
|
int
|
Controls the smoothness prior. The higher this integer, the higher the pursued smoothness of the inverse solution. |
1
|
Return
self : object returns itself for convenience