Skip to content

Gamma Maximum A Posteriori

Solver ID: Gamma-MAP

Usage

from invert import Solver

# fwd = ...    (mne.Forward object)
# evoked = ... (mne.Evoked object)

solver = Solver("Gamma-MAP")
solver.make_inverse_operator(fwd)
stc = solver.apply_inverse_operator(evoked)
stc.plot()

Overview

Sparse Bayesian inverse solution using a Gamma hyperprior (ARD-style) within the unified Bayesian source imaging framework.

References

  1. Wipf, D., & Nagarajan, S. (2009). A unified Bayesian framework for MEG/EEG source imaging. NeuroImage, 44(3), 947–966.

API Reference

Bases: BaseSolver

Class for the Gamma Maximum A Posteriori (Gamma-MAP) inverse solution [1].

References

Wipf, D., & Nagarajan, S. (2009). A unified Bayesian framework for MEG/EEG source imaging. NeuroImage, 44(3), 947-966.

Source code in invert/solvers/bayesian/gamma_map.py
class SolverGammaMAP(BaseSolver):
    """Class for the Gamma Maximum A Posteriori (Gamma-MAP) inverse solution [1].

    References
    ----------
    Wipf, D., & Nagarajan, S. (2009). A unified Bayesian framework for MEG/EEG
    source imaging. NeuroImage, 44(3), 947-966.

    """

    meta = SolverMeta(
        acronym="Gamma-MAP",
        full_name="Gamma Maximum A Posteriori",
        category="Bayesian",
        description=(
            "Sparse Bayesian inverse solution using a Gamma hyperprior (ARD-style) "
            "within the unified Bayesian source imaging framework."
        ),
        references=[
            "Wipf, D., & Nagarajan, S. (2009). A unified Bayesian framework for MEG/EEG source imaging. NeuroImage, 44(3), 947–966.",
        ],
    )

    def __init__(self, name="Gamma-MAP", **kwargs):
        self.name = name
        return super().__init__(**kwargs)

    def make_inverse_operator(
        self,
        forward,
        mne_obj,
        *args,
        alpha="auto",
        smoothness_prior=False,
        max_iter=100,
        verbose=0,
        **kwargs,
    ):
        """Calculate inverse operator.

        Parameters
        ----------
        forward : mne.Forward
            The mne-python Forward model instance.
        mne_obj : [mne.Evoked, mne.Epochs, mne.io.Raw]
            The MNE data object.
        alpha : str/ float
            The regularization parameter.
        max_iter : int
            Maximum numbers of iterations to find the optimal hyperparameters.
            max_iter = 1 corresponds to sLORETA.
        smoothness_prior : bool



        Return
        ------
        self : object returns itself for convenience

        """
        super().make_inverse_operator(forward, *args, alpha=alpha, **kwargs)
        leadfield = self.leadfield
        n_chans, n_dipoles = leadfield.shape
        data = self.unpack_data_obj(mne_obj)
        data_cov = self.data_covariance(data, center=True, ddof=1)
        self.get_alphas(reference=data_cov)

        if smoothness_prior:
            adjacency = mne.spatial_src_adjacency(self.forward["src"], verbose=0)
            self.gradient = laplacian(adjacency).toarray().astype(np.float32)
            self.sigma_s = np.identity(n_dipoles) @ abs(self.gradient)
        else:
            self.gradient = None
            self.sigma_s = np.identity(n_dipoles)

        inverse_operators = []
        for alpha in self.alphas:
            inverse_operator = self.make_gamma_map_inverse_operator(
                data, alpha, max_iter=max_iter
            )
            inverse_operators.append(inverse_operator)

        self.inverse_operators = [
            InverseOperator(inverse_operator, self.name)
            for inverse_operator in inverse_operators
        ]
        return self

    def make_gamma_map_inverse_operator(self, B, alpha, max_iter=100):
        """Computes the gamma MAP inverse operator based on the M/EEG data.

        Parameters
        ----------
        B : numpy.ndarray
            The M/EEG data matrix (channels, time points).
        alpha : float
            The regularization parameter.
        max_iter : int
            Maximum numbers of iterations to find the optimal hyperparameters.
            max_iter = 1 corresponds to sLORETA.

        Return
        ------
        inverse_operator : numpy.ndarray
            The inverse operator which can be used to compute inverse solutions from new data.

        """
        L = deepcopy(self.leadfield)
        db, n = B.shape
        ds = L.shape[1]

        # Ensure Common average reference
        B -= B.mean(axis=0)
        L -= L.mean(axis=0)

        # Data Covariance Matrix
        gammas = np.ones(ds)
        sigma_e = alpha * np.identity(db)

        sigma_b = sigma_e + L @ self.sigma_s @ L.T
        sigma_b_inv = np.linalg.inv(sigma_b)

        for _k in range(max_iter):
            old_gammas = deepcopy(gammas)

            # according to equation (30)
            term_1 = (gammas / np.sqrt(n)) * np.sqrt(
                np.sum((L.T @ sigma_b_inv @ B) ** 2, axis=1)
            )
            term_2 = 1 / np.sqrt(np.diagonal(L.T @ sigma_b_inv @ L))

            gammas = term_1 * term_2
            if np.linalg.norm(gammas) == 0:
                gammas = old_gammas
                break

        gammas_final = gammas / gammas.max()
        sigma_s_hat = (
            np.diag(gammas_final) @ self.sigma_s
        )  #  np.array([gammas_final[i] * C[i] for i in range(ds)])
        inverse_operator = (
            sigma_s_hat @ L.T @ np.linalg.inv(sigma_e + L @ sigma_s_hat @ L.T)
        )

        # This way the inverse operator would be applied to M/EEG matrix B:
        # S = inverse_operator @ B

        return inverse_operator

    @staticmethod
    def frob(x):
        if len(x.shape) == 1:
            x = x[:, np.newaxis]
        return np.sqrt(np.trace(x @ x.T))

__init__

__init__(name='Gamma-MAP', **kwargs)
Source code in invert/solvers/bayesian/gamma_map.py
def __init__(self, name="Gamma-MAP", **kwargs):
    self.name = name
    return super().__init__(**kwargs)

make_inverse_operator

make_inverse_operator(
    forward,
    mne_obj,
    *args,
    alpha="auto",
    smoothness_prior=False,
    max_iter=100,
    verbose=0,
    **kwargs,
)

Calculate inverse operator.

Parameters:

Name Type Description Default
forward Forward

The mne-python Forward model instance.

required
mne_obj [Evoked, Epochs, Raw]

The MNE data object.

required
alpha str / float

The regularization parameter.

'auto'
max_iter int

Maximum numbers of iterations to find the optimal hyperparameters. max_iter = 1 corresponds to sLORETA.

100
smoothness_prior bool
False
Return

self : object returns itself for convenience

Source code in invert/solvers/bayesian/gamma_map.py
def make_inverse_operator(
    self,
    forward,
    mne_obj,
    *args,
    alpha="auto",
    smoothness_prior=False,
    max_iter=100,
    verbose=0,
    **kwargs,
):
    """Calculate inverse operator.

    Parameters
    ----------
    forward : mne.Forward
        The mne-python Forward model instance.
    mne_obj : [mne.Evoked, mne.Epochs, mne.io.Raw]
        The MNE data object.
    alpha : str/ float
        The regularization parameter.
    max_iter : int
        Maximum numbers of iterations to find the optimal hyperparameters.
        max_iter = 1 corresponds to sLORETA.
    smoothness_prior : bool



    Return
    ------
    self : object returns itself for convenience

    """
    super().make_inverse_operator(forward, *args, alpha=alpha, **kwargs)
    leadfield = self.leadfield
    n_chans, n_dipoles = leadfield.shape
    data = self.unpack_data_obj(mne_obj)
    data_cov = self.data_covariance(data, center=True, ddof=1)
    self.get_alphas(reference=data_cov)

    if smoothness_prior:
        adjacency = mne.spatial_src_adjacency(self.forward["src"], verbose=0)
        self.gradient = laplacian(adjacency).toarray().astype(np.float32)
        self.sigma_s = np.identity(n_dipoles) @ abs(self.gradient)
    else:
        self.gradient = None
        self.sigma_s = np.identity(n_dipoles)

    inverse_operators = []
    for alpha in self.alphas:
        inverse_operator = self.make_gamma_map_inverse_operator(
            data, alpha, max_iter=max_iter
        )
        inverse_operators.append(inverse_operator)

    self.inverse_operators = [
        InverseOperator(inverse_operator, self.name)
        for inverse_operator in inverse_operators
    ]
    return self