Gamma Maximum A Posteriori¶
Solver ID: Gamma-MAP
Usage¶
from invert import Solver
# fwd = ... (mne.Forward object)
# evoked = ... (mne.Evoked object)
solver = Solver("Gamma-MAP")
solver.make_inverse_operator(fwd)
stc = solver.apply_inverse_operator(evoked)
stc.plot()
Overview¶
Sparse Bayesian inverse solution using a Gamma hyperprior (ARD-style) within the unified Bayesian source imaging framework.
References¶
- Wipf, D., & Nagarajan, S. (2009). A unified Bayesian framework for MEG/EEG source imaging. NeuroImage, 44(3), 947–966.
API Reference¶
Bases: BaseSolver
Class for the Gamma Maximum A Posteriori (Gamma-MAP) inverse solution [1].
References
Wipf, D., & Nagarajan, S. (2009). A unified Bayesian framework for MEG/EEG source imaging. NeuroImage, 44(3), 947-966.
Source code in invert/solvers/bayesian/gamma_map.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 | |
__init__ ¶
make_inverse_operator ¶
make_inverse_operator(
forward,
mne_obj,
*args,
alpha="auto",
smoothness_prior=False,
max_iter=100,
verbose=0,
**kwargs,
)
Calculate inverse operator.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
forward
|
Forward
|
The mne-python Forward model instance. |
required |
mne_obj
|
[Evoked, Epochs, Raw]
|
The MNE data object. |
required |
alpha
|
str / float
|
The regularization parameter. |
'auto'
|
max_iter
|
int
|
Maximum numbers of iterations to find the optimal hyperparameters. max_iter = 1 corresponds to sLORETA. |
100
|
smoothness_prior
|
bool
|
|
False
|
Return
self : object returns itself for convenience