Coherent Maximum Entropy on the Mean¶
Solver ID: cMEM
Usage¶
from invert import Solver
# fwd = ... (mne.Forward object)
# evoked = ... (mne.Evoked object)
solver = Solver("cMEM")
solver.make_inverse_operator(fwd)
stc = solver.apply_inverse_operator(evoked)
stc.plot()
Overview¶
Maximum-entropy-on-the-mean approach using graphical models and parcel-wise optimization (data-driven parcellation) to estimate source activity.
References¶
- Amblard, C., Lapalme, E., & Bhatt, P. (2004). Biomagnetic source detection by maximum entropy and graphical models. IEEE Transactions on Biomedical Engineering, 51(3), 427–442.
API Reference¶
Bases: BaseSolver
Coherent Maximum Entropy on the Mean (cMEM) source localization solver.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
name
|
str
|
Name of the solver. |
'cMEM'
|
num_parcels
|
int
|
Number of parcels for data-driven parcellation. |
200
|
max_iter
|
int
|
Maximum optimization iterations per time point. |
100
|
batch_size
|
int
|
Batch size for time-point processing. |
100
|
References
Amblard, C., Lapalme, E., & Bhatt, P. (2004). Biomagnetic source detection by maximum entropy and graphical models. IEEE Transactions on Biomedical Engineering, 51(3), 427-442.
Source code in invert/solvers/bayesian/cmem.py
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 | |
__init__ ¶
Source code in invert/solvers/bayesian/cmem.py
make_inverse_operator ¶
make_inverse_operator(
forward,
mne_obj,
*args,
alpha="auto",
adjacency=None,
positions=None,
**kwargs,
)
Calculate inverse operator.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
forward
|
Forward
|
The mne-python Forward model instance. |
required |
mne_obj
|
[Evoked, Epochs, Raw]
|
The MNE data object. |
required |
alpha
|
float
|
The regularization parameter. |
'auto'
|
adjacency
|
ndarray
|
Source adjacency matrix (n, n). |
None
|
positions
|
ndarray
|
Source positions (n, 3). |
None
|
Return
self : object returns itself for convenience
Source code in invert/solvers/bayesian/cmem.py
apply_inverse_operator ¶
Apply the cMEM inverse operator.
Since cMEM computes the full source time series during
make_inverse_operator, applying the operator re-runs the
algorithm on the new data.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
mne_obj
|
[Evoked, Epochs, Raw]
|
The MNE data object. |
required |
Return
stc : mne.SourceEstimate The source estimate.