Bayesian Compressive Sensing¶
Solver ID: BCS
Usage¶
from invert import Solver
# fwd = ... (mne.Forward object)
# evoked = ... (mne.Evoked object)
solver = Solver("BCS")
solver.make_inverse_operator(fwd)
stc = solver.apply_inverse_operator(evoked)
stc.plot()
Overview¶
Sparse Bayesian inverse method based on Bayesian compressive sensing, using hierarchical priors to promote sparse source estimates.
References¶
- Ji, S., Xue, Y., & Carin, L. (2008). Bayesian compressive sensing. IEEE Transactions on Signal Processing, 56(6), 2346–2356.
API Reference¶
Bases: BaseSolver
Class for the Bayesian Compressed Sensing (BCS) inverse solution [1].
References
[1] Ji, S., Xue, Y., & Carin, L. (2008). Bayesian compressive sensing. IEEE Transactions on signal processing, 56(6), 2346-2356.
Source code in invert/solvers/bayesian/bcs.py
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 | |
__init__ ¶
make_inverse_operator ¶
Calculate inverse operator.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
forward
|
Forward
|
The mne-python Forward model instance. |
required |
alpha
|
float
|
The regularization parameter. |
'auto'
|
Return
self : object returns itself for convenience
Source code in invert/solvers/bayesian/bcs.py
apply_inverse_operator ¶
Apply the inverse operator.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
mne_obj
|
[Evoked, Epochs, Raw]
|
The MNE data object. |
required |
max_iter
|
int
|
Maximum number of iterations |
100
|
alpha_0
|
float
|
Regularization parameter |
0.01
|
eps
|
float
|
Epsilon, used to avoid division by zero. |
1e-16
|
Return
stc : mne.SourceEstimate The SourceEstimate data structure containing the inverse solution.