Random Noise Baseline
Solver ID: RAND
Usage
from invert import Solver
# fwd = ... (mne.Forward object)
# evoked = ... (mne.Evoked object)
solver = Solver("RAND")
solver.make_inverse_operator(fwd)
stc = solver.apply_inverse_operator(evoked)
stc.plot()
Overview
Baseline solver that returns random Gaussian noise with the correct source dimensionality. Useful for sanity-checking pipelines.
References
- Lukas Hecker 2025, unpublished
API Reference
Bases: BaseSolver
Baseline solver that returns random Gaussian noise as source estimate.
Source code in invert/solvers/random_noise.py
| class SolverRandomNoise(BaseSolver):
"""Baseline solver that returns random Gaussian noise as source estimate."""
meta = SolverMeta(
acronym="RAND",
full_name="Random Noise Baseline",
category="Baseline",
description=(
"Baseline solver that returns random Gaussian noise with the correct "
"source dimensionality. Useful for sanity-checking pipelines."
),
references=["Lukas Hecker 2025, unpublished"],
)
def __init__(self, name="Random Noise", **kwargs):
self.name = name
super().__init__(**kwargs)
self.require_recompute = False
self.require_data = False
def make_inverse_operator(self, forward, *args, alpha="auto", **kwargs):
super().make_inverse_operator(
forward, *args, reference=None, alpha=alpha, **kwargs
)
self.n_sources = self.leadfield.shape[1]
return self
def apply_inverse_operator(self, mne_obj):
data = self.unpack_data_obj(mne_obj)
n_time = data.shape[1] if data.ndim > 1 else 1
source_mat = np.random.randn(self.n_sources, n_time)
return self.source_to_object(source_mat)
|
__init__
__init__(name='Random Noise', **kwargs)
Source code in invert/solvers/random_noise.py
| def __init__(self, name="Random Noise", **kwargs):
self.name = name
super().__init__(**kwargs)
self.require_recompute = False
self.require_data = False
|
make_inverse_operator
make_inverse_operator(
forward, *args, alpha="auto", **kwargs
)
Source code in invert/solvers/random_noise.py
| def make_inverse_operator(self, forward, *args, alpha="auto", **kwargs):
super().make_inverse_operator(
forward, *args, reference=None, alpha=alpha, **kwargs
)
self.n_sources = self.leadfield.shape[1]
return self
|
apply_inverse_operator
apply_inverse_operator(mne_obj)
Source code in invert/solvers/random_noise.py
| def apply_inverse_operator(self, mne_obj):
data = self.unpack_data_obj(mne_obj)
n_time = data.shape[1] if data.ndim > 1 else 1
source_mat = np.random.randn(self.n_sources, n_time)
return self.source_to_object(source_mat)
|